diagnostic_plots
diagnostic_plots(
df,
X = "X",
Y = "Y",
time = "time",
pred = "pred",
resid = "resid",
demean_time = TRUE
)
Dataframe, containing locations, time, and predictions
Character string containing the name of X variable
Character string containing the name of Y variable
Character string containing the name of time variable
Character string containing the name of prediction variable
Character string containing the name of residual
Boolean, whether or not to remove temporal means (similar to fixed time effects). Defaults to TRUE
A list of ggplot objects that can be manipulated further
# \donttest{
set.seed(2021)
d <- data.frame(
X = runif(1000), Y = runif(1000),
year = sample(1:10, size = 1000, replace = TRUE)
)
d$density <- rnorm(0.01 * d$X - 0.001 * d$X * d$X + d$Y * 0.02 - 0.005 * d$Y * d$Y, 0, 0.1)
m <- mgcv::gam(density ~ 0 + as.factor(year) + s(X, Y), data = d)
d$pred <- predict(m)
# d$resid = residuals(m)
# # the default names match, with the exception of year -- so change it
# plots <- diagnostic_plots(d, time="year")
# }