diagnostic_plots

diagnostic_plots(
  df,
  X = "X",
  Y = "Y",
  time = "time",
  pred = "pred",
  resid = "resid",
  demean_time = TRUE
)

Arguments

df

Dataframe, containing locations, time, and predictions

X

Character string containing the name of X variable

Y

Character string containing the name of Y variable

time

Character string containing the name of time variable

pred

Character string containing the name of prediction variable

resid

Character string containing the name of residual

demean_time

Boolean, whether or not to remove temporal means (similar to fixed time effects). Defaults to TRUE

Value

A list of ggplot objects that can be manipulated further

Examples

# \donttest{
set.seed(2021)
d <- data.frame(
  X = runif(1000), Y = runif(1000),
  year = sample(1:10, size = 1000, replace = TRUE)
)
d$density <- rnorm(0.01 * d$X - 0.001 * d$X * d$X + d$Y * 0.02 - 0.005 * d$Y * d$Y, 0, 0.1)
m <- mgcv::gam(density ~ 0 + as.factor(year) + s(X, Y), data = d)
d$pred <- predict(m)
#  d$resid = residuals(m)
#  # the default names match, with the exception of year -- so change it
#  plots <- diagnostic_plots(d, time="year")
# }